Posters
Short-talks
CRISPR 2021
June 1-10, 2021

 
Wednesday, June 2, 2021
Session Poster 1
7.00 pm-8.00 pm (GMT+2)
1A

Harnessing immunosuppression used in organ transplant for efficient and safe in vivo adenoviral-mediated CRISPR/Cas9 transcriptional modulation in the lung

K. Mesaki*1-2, S. Juvet1-2, Z. Guan1, J. Hu2, A. Davidson2, M. Cypel1-2, M. Liu1-2, S. Keshavjee1-2
1Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto, Canada 2Temerty Faculty of Medicine, University of Toronto, Toronto, Canada 
1C

Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex

J. Wang*, C. Hoel, B. Al-Shayeb, J. Banfield, S. Brohawn, J. Doudna
UC Berkeley, Berkeley, United States 
2A

Virus-induced cell gigantism and asymmetric cell division in Archaea

J. Liu*1-2, C. Virginija1, P. Diana1, Y. Yunfeng2, Z. Qi3, S. Yulong2, K. Mart1
1Microbiology, Archaeal Virology Unit, Institut Pasteur, Paris, France 2CRISPR and Archaea Biology Research Center,State Key Laboratory of Microbial Technology, Shandong University, Qing Dao, China 3Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China 
2C

Small Cas13 proteins enable compact RNA base editors

S. Kannan*1-2, H. Altae-Tran1-2, X. Jin1-2, V. Madigan1-2, R. Oshiro1, K.S. Makarova3, E.V. Koonin3, F. Zhang1-2
1Broad Institute of MIT and Harvard, Cambridge, United States 2Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States 3National Center for Biotechnology Information, National Institutes of Health, Bethesda, United States 
3A

UNRAVELING CRISPR-CAS MODULE ACQUISITION IN Shewanella GENOMES

T. Ayala Nuñez1, G. Cerbino1, G. Parmeciano Di Noto1, D. Centrón1, A. Iriarte2, C. Quiroga*1
1Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina 2Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay 
3C

DNA interference mechanism of a hypercompact CRISPR-CasΦ effector

P. Pausch*, K. Soczek, B. Al-Shayeb, J. Banfield, E. Nogales, J. Doudna
UC Berkeley, Berkeley, United States 
4A

Intrinsic Signal Amplification by Type-III CRISPR-Cas Systems Provides a Sequence-Specific Viral Diagnostic

A. Santiago-Frangos*, L. Hall, A. Nemudraia, A. Nemudryi, P. Krishna, T. Wiegand, R. Wilkinson, D. Snyder, J. Hedges, C. Cicha, H. Lee, A. Graham, M. Jutila, M. Taylor, B. Wiedenheft
Microbiology & Immunology, Montana State University, Bozeman, United States 
4C

Discovery and Optimization of OMNI™-50 a CRISPR-Associated Nuclease (CAS) for Precise Mono Allelic Knockout in ELANE dependent Severe Congenital Neutropenia

L. Rockah*1, T. Bar1, M. Gabay1, O. Zuker1, L. Shukri1, N. Marbach Bar1, S. Cohen1, B. Ayalon1, Y. Dicken1, D. Elinger1, L. Povodovski1, P. Sabo2, T. Poulsen2, V. Makaryan2, DC. Dale2, L. Izhar1, R. Emmanuel1, A. Herman1
1Emendo Biotherapeutics, Ness Ziona, Israel 2Division of General Internal Medicine, University of Washington, Seattle, Wa, United States 
5C

Characterizing cleavage activity of CRISPR guide RNAs in bacteria

D. Ham*1, T. Browne1, T. Wilson2, R. Michael2, G. Gloor1, D. Edgell1
1Department of Biochemistry, Schulich School of Medicine and Dentistry, Brantford, Canada 2Tesseraqt Optimization Inc, Canada 
6A

Genetic Engineering of Jumbo Bacteriophage ФKZ via CRISPR-Cas13a System

J. Guan*, J. Bondy-Denomy
UCSF, San Francisco, United States 
6C

Improved methods for CRISPR HDR using Alt-R modified dsDNA donors and Alt-R HDR Enhancer

J. Woodley, B. Thommandru, M. Schubert, K. Murugan*, G. Kurgan, M. Mc Neill, A. Jacobi, G. Rettig
Integrated DNA Technologies, Inc, Coralville, Iowa, United States 
7A

A CRISPR-Cas antimicrobial for the treatment of shiga-toxin producing E. coli

J. Fernandez*, M. Galtier, M. Arraou, L. Charpenay, A. Decrulle, F. Fuche, O. Kerbarh, A. Krawczyk, S. Pignotti, C. Poquet, D. Garry, G. Prevot, M. Rouquette, D. Spadoni, I. Stzepourginski, R. Terrasse, X. Duportet, D. Bikard
Eligo Bioscience, Paris, France 
7C

Phages on the mend: DNA repair as a novel anti-CRISPR and immune evasion mechanism

S. Karambelkar*, A. Villani, S. Govindarajan, B. Csörgő, J. Bondy-Denomy
Microbiology and Immunology, University of California San Francisco, San Francisco, United States 
8A

UnCovid: an open-source SARS-CoV-2 molecular test for low- and middle-income countries

R. Alcantara*1, K. Peñaranda1, G. Mendoza1, JA. Nakamoto1, J. Martins-Luna1-2, J. Del Valle1-2, V. Adaui1, P. Milon1
1Centre for Research and Innovation, Universidad Peruana de Ciencias Aplicadas, Lima, Peru 2Laboratory of Molecular Biology, Instituto de Investigación Nutricional, Lima, Peru 
8C

A conjugative plasmid from hyperthermophilic Archaea encodes three anti-CRISPRs

R. Catchpole*, E. Watts, J. Mclean, M. Terns
University of Georgia, Athens, United States 
9A

Site-Specific Labels Reveal CRISPR-Cas9 Induces Partial PAM-distal Protospacer Unwinding Without RNA/DNA Pairing

Y. Liu, Y. Li, J. Singh, P. Qin*
University of Southern California, Los Angeles, United States 
9C

Bacteriophages evolve according to lax specificity of Cas12a effector proteins

M. Schelling*, D. Sashital
BBMB, Iowa State University, Ames, United States 
10A

Molecular Simulations to Decrypt Dynamics and Mechanisms of CRISPR Systems

G. Palermo
University of California Riverside, Riverside, United States 
10C

A DNA-induced Allosteric Activation Primes Cas12a for DNA Processing

A. Saha*1, P.R. Arantes1, R. Hsu1, M. Sample1, M. Jinek2, G. Palermo1
1Bioengineering, University of California, Riverside, Riverside, United States 2Department of Biochemistry, University of Zurich, Zurich, Switzerland 
11A

Defining the allosteric mechanism in CRISPR-Cas9

P. Arantes*, L. Nierzwicki, A. Saha, A.C. Patel, P. Lawton, G. Palermo
Bioengineering, University California, Riverside, Riverside, United States 
11C

A compact CRISPR-Cas3 system for large-scale genomic deletions and prophage removal

B. Csorgo*, L. Leon, J. Bondy-Denomy
Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States 
12A

CRISPR repeat sequences for phylogenetic profiling of metagenomic data

W. Xiao*, P. Johnson
University of Maryland, State College, United States 
12C

Discovery and Characterization of a Novel Methylation Sensitive Cas9

A. Das
Institute of Molecular Biophysics, Florida State University, Tallahassee, United States 
13A

Type III-A CRISPR-Cas immunity promotes mutagenesis of staphylococci

C. Mo*1, J. Mathai1, J. Rostøl1, A. Varble1, D. Banh1-2, L. Marraffini1
1Marraffini lab, Rockefeller University, New York, United States 2Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD–PhD Program, New York, United States 
13C

Generation of reporter-gene models based on genetically engineered progenitor cells using CRISPR–Cas9 technology

M. Alriquet*, D. Bovard, R. Dulize, D. Bornand, J. Battey, E. Guedj, N. Sierro, K. Luettich, M. Van Der Toorn, S. Frentzel, J. Hoeng
PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland 
14A

A tryptophan ‘gate’ in the CRISPR-Cas3 nuclease controls ssDNA entry into the nuclease site in Escherichia coli

H. Liu1, Z. Jelic Matosevic2, D. Mitić3, D. Markulin3, M. Matkovic4, T. Killelea1, B. Bertosa2, E. Bolt1, I. Ivancic Bace*3
1University of Nottingham, Nottingham, United Kingdom 2Department of Chemistry, University of Zagreb, Zagreb, Croatia 3Department of Biology, University of Zagreb, Faculty of Science, Zagreb, Croatia 4Institute Ruđer Bo¨ković, Zagreb, Croatia 
14C

Clarifying mechanisms of horizontal gene transfer in Neisseria: new approaches using single-molecule fluorescence imaging and genome sequence analysis

A. Hughes-Games*1-2, R. Harniman3, E. Carter3-4, A. Roberts5, S. Davis3, D. Hill1
1School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom 2School of Biochemistry, University of Bristol, Bristol, United Kingdom 3School of Chemistry, University of Bristol, Bristol, United Kingdom 4Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, United Kingdom 5Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom 
15A

New Tools for CRISPR-based Gene Modulation and Multimodal Regulation

C. Mills, K. Hemphill, S. Dickerson Matheny, A. Keller, A. Haupt, E. Maksimova, M. Mayer Gross, T. Hardcastle, K. Marshall, J. Schiel, M. Perkett, J. Stombaugh, E. Anderson*, E. Chou, H. Machado, Z. Strezoska, A. Van Brabant Smith
Biology R&D, Horizon Discovery, Lafayette, United States 
15C

CRISP’edit core facility

V. Prouzet-Mauleon*1-2, B. Turcq1-2
1INSERM U1218-ACTION, Université de Bordeaux, Bordeaux, France 2UMS TBMcore, Inserm, Bordeaux, France 
16A

Dystrophin isoforms impact on neuronal development in Human pluripotent stem cell-derived cortical neurons

L. Chatrousse*1, T. Poullion2, C. Boissart1, A. Benchoua1
1Neuroplasticity and Therapeutics Group, CECS/ISTEM/AFM, Corbeil-Essones, France 2Inovarion, Paris, France 
16C

Minimal genome-wide human CRISPR-Cas9 library

E. Goncalves*1, M. Thomas1, F. Behan1, G. Picco1, C. Pacini1, F. Allen1, M. Sharma1, D. Jackson1, S. Price1, C. Beaver1, O. Dovey1, D. Parry-Smith1, F. Iorio2-1, L. Parts1, K. Yusa3, M. Garnett1
1Cancer, Ageing and Somatic Mutations Programme, Wellcome Sanger Institute, Cambridge, United Kingdom 2Human Technopole, Milan, Italy 3Kyoto University, Kyoto, Japan 
17A

Gain-of-function CRISPR screens identify tumor-promoting genes conferring melanoma cell plasticity and resistance

D. Gilot
INSERM U1242, University Rennes 1, Rennes, France 
17C

CRISPR-Cas system and its relationships with regulatory RNA network in the human pathogen Clostridium difficile

O. Soutourina
I2BC institute, Microbiology department, Regulatory RNAs in Clostridia, Paris-Saclay University, Orsay, France 
Thursday, June 3, 2021
Session Poster 2
12.40 pm-2.00 pm (GMT+2)
1B

Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing

S. Acharya
Genomics and Molecular Medicine, CSIR-IGIB, New Delhi, India 
1D

Dissecting the target recognition by CRISPR/Cas effector complexes with ultrafast twist measurements

J. Madariaga-Marcos*1, D. Kauert1, M. Rutkauskas1, A. Wulfken1, I. Songailiene2, T. Sinkunas2, V. Siksnys2, R. Seidel1
1Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany 2Institute of Biotechnology, Vilnius University, Vilnius, Germany 
2B

Decoupling the bridge helix of Cas12a results in a reduced trimming activity and impaired conformational transitions

E. Wörle*1, L. Jakob2-1, A. Schmidbauer1, G. Zinner1, D. Grohmann1
1Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany 2Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany 
2D

Exploring the physiological role of type III pks genes of Mycobacterium marinum through the generation of CRISPR interference-based genetic knockdowns

R. Bisht*1, E. Choudhary2, N. Agarwal2, P. Saxena1
1Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India 2Translational Health Science and Technology Institute, Translational Health Science and Technology Institute, New Delhi, India 
3B

SIBR-Cas enables host-independent and universal CRISPR genome engineering in prokaryotes

C. Patinios*1, S. Creutzburg1, A. Arifah1, B. Perez1, C. Ingham2, S. Kengen1, J. Van Der Oost1, R. Staals1
1Microbiology, Bacterial Genetics, Wageningen University and Research, Wageningen, The Netherlands 2Hoekmine BV, Utrecht, The Netherlands 
3D

Bacterial Retrons Function In Anti-Phage Defense

A. Millman*1, A. Bernheim2, A. Stokar-Avihail1, T. Fedorenko1, M. Voichek3, Y. Oppenheimer-Shaanan1, A. Leavitt1, R. Sorek1
1Weizmann Institute, Rehovot, Israel 2Institut National de la Santé et de la Recherche Médicale, Paris, France 3Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria 
4B

Verification of genome editing by Xdrop® indirect sequence capture followed by long- and short-read sequencing

T. Blondal, K. Geng, C. Gamba, L. Møller Jagd, L. Su, D. Demirov, S. Guo, C.M. Johnston, E.M. Riising, X. Wu, M.J. Mikkelsen, L. Szabova, C. Kutter, P. Mouritzen
1Samplix, Denmark 2National Cancer Institute, United States 3Karolinska Institute, Sweden 
4D

Position of Deltaproteobacteria Cas12e nuclease cleavage sites depends on spacer length of guide RNA

P. Selkova*1, A. Vasileva1, O. Musharova2-3, M. Kazalov4, M. Khodorkovskii4, K. Severinov2-1, I. Fedorova2-1
1Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia 2Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia 3Institute of Molecular Genetics Russian Academy of Sciences, Moscow, Russia 4Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia 
5B

ISEARCH, a Novel Type of CRISPR Screening based on Guide RNA Mini-Pools

C. Gruber*1-2, J. Pelzer1-2, L. Mazneykova1-2, F. Giesert1-2, W. Wurst1-3
1Institute of Developmental Genetics, Helmholtz Center, Munich, Germany 2Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany 3German Center for Neurodegenerative Diseases, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 
5D

Hunting new class 2 CRISPR-Cas systems

B. Esquerra Ruvira*, R. Ruiz, I. Baquedano, FJM. Mojica
Physology, genetics and microbiology, University of Alicante, Alicante, Spain 
6B

Synonymous corrections expand the targeting scope of base editing

R. Rabinowitz*, S. Abadi, S. Almog, D. Offen
Tel Aviv University, Tel Aviv, Israel 
6D

Streptococcus thermophilus Csm6 degrades its own activator using both CARF and HEPN domains

D. Smalakyte*1, M. Kazlauskiene1, J.F. Havelund2, A. Ruk¨ėnaitė1, A. Rimaite1, G. Tamulaitiene1, N.J. Færgeman2, G. Tamulaitis1, V. Siksnys1
1Institute of Biotechnology, Vilnius University, Vilnius, Lithuania 2Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark 
7B

HEPN-MNT Toxin-Antitoxin System: The HEPN Ribonuclease Is Neutralized by OligoAMPylation

I. Songailiene1, J. Juozapaitis*1, G. Tamulaite1, A. Ruksenaite1, S. ¦ulčius2, G. Sasnauskas1, Č. Venclovas1, V. Siksnys1
1Life Sciences Center, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania 2Laboratory of Algology and Microbial Ecology, Nature Research Centre, Vilnius, Lithuania 
7D

Single-Molecule Analysis of CRISPR-Cas12a targeting activity on optically trapped λ-DNA

M. Losito*1, Q. Smith1, E. Cuomo2, G. King1, D. Rueda1
1Imperial College, London, United Kingdom 2AstraZeneca, Cambridge, United Kingdom 
8B

Non-canonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9

C. Jiao*1, S. Sharma2, G. Dugar2, N. Peeck1, T. Bischler3, F. Wimmer1, Y. Yu1, L. Barquist1-4, C. Schoen5, O. Kurzai5, C. Sharma2, C. Beisel1-4
1Helmholtz Institute for RNA-based Infection Research (HIRI) / Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany 2Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology,University of Wurzburg, Würzburg, Germany 3Core Unit Systems Medicine, University of Wurzburg, Würzburg, Germany 4Medical Faculty, University of Wurzburg, Würzburg, Germany 5Institute for Hygiene and Microbiology, University of Wurzburg, Würzburg, Germany 
8D

A small RNA is linking CRISPR-Cas and zinc transport

P. Märkle*1, L.K. Maier1, S. Maaß2, C. Hirschfeld2, J. Bartel2, D. Becher2, B. Voß3, A. Marchfelder1
1Marchfelder Lab, Ulm University, Ulm, Germany 2Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany 3Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany 
9B

Characterization of Clostridium cellulolyticum  Type II-C CRISPR–Cas system

A. Arseniev*1-2, I. Fedorova1-3, P. Selkova1-3, G. Pobegalov2, I. Goryanin3, A. Vasileva1-3, O. Musharova3-4, M. Abramova2, M. Kazalov2, T. Zyubko3-2, T. Artamonova2, D. Artamonova3, S. Shmakov5, M. Khodorkovskii2, K. Severinov1-3
1Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia 2Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, Russia 3Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow, Russia 4Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia 5National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States 
9D

Stochastic molecular processes create heterogeneity in population of genetically identical E. coli cells mounting type I-E CRISPR-Cas interference

V. Mamontov*1, A. Martynov1, N. Morozova1-2, A. Bukatin3, D.B. Staroverov4, K.A. Lukyanov1, Y. Ispolatov5, E. Semenova6, K. Severinov1-6
1Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia 2Peter the Great St Petersburg State Polytechnic University, Saint Petersburg, Russia 3Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Moscow, Russia 4Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, Moscow, Russia 5Universidad de Santiago de Chile, Santiago, Chile 6Waksman Institute for Microbiology, Rutgers, United States 
10B

Adaptation in Type II CRISPR-Cas systems

G. Sasnauskas*1, U. Gai¸auskaitė1, R. Ivanickaitė1, A. Silanskas1, G. Gasiunas1-2, V. Siksnys1
1Life Sciences Center, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania 2CasZyme, Vilnius, Lithuania 
10D

Miniature CRISPR-Cas12f nucleases deliver temperature-controlled genome editing in plants

J. Young*1, V. Dukanovic1, G. Bigelyte2, T. Karvelis2, P. Barone1, S. Gasior1, L. Van Ginkel1, K. Budre2, R. Zedaveinyte2, A. Silanskas2, V. Siksnys2
1Molecular Engineering, Corteva Agriscience, Johnston, United States 2Institute of Biotechnology, Vilnius University, Vilnius, Lithuania 
11B

Regulation of Streptococcus agalactiae type II-A CRISPR-Cas system

C. Lemaire1-2, P. Lanotte1-2, A. Pastuszka*1-2
1Université de Tours, INRAE, ISP, Tours, France 2Service de Bactériologie-Virologie-Hygiène hospitalière, CHRU de Tours, Tours, France 
11D

Understanding the resistance landscape to CRISPR/Cas9-based gene drives in the malaria mosquito

I. Morianou*1, A. Hammond1-2, T. Nolan3, A. Crisanti1
1Department of Life Sciences, Imperial College London, London, United Kingdom 2Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States 3Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom 
12B

Application of Clostridium difficile CRISPR-Cas system for epidemiological monitoring and infection prevention

P. Muzyukina*1-2, A. Stepakov3, K. Severinov1, O. Soutourina2
1Life Sciences, Skoltech, Moscow, Russia 2I2BC, Regulatory RNAs in Clostridia, Paris-Saclay University, Paris, France 3Laboratory of Molecular Organization of Genome, Institute of Gene Biology, Moscow, Russia 
12D

Epidemiological and evolutionary consequences of CRISPR-Cas reactivity

H. Chabas*1, V. Müller2, S. Bonhoeffer1, R. Regoes1
1ETH Zürich, Zürich, Switzerland 2Eötvös Loránd University, Budapest, Hungary 
13B

Fast design of efficient guide RNAs across entire genomes

J. Bradford*, T. Chappell, D. Perrin
Queensland University of Technology, Brisbane, Australia 
13D

Updated CasX gene manipulation tool with largely improved efficacy 

JJG. Liu1, C. Tsuchida2, MS. Doost2, JA. Doudna2
1The School of Life Sciences, Tsinghua University, Beijing, China 2California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, United States 
14B

Direct observation of genome surveillance by CRISPR-Cas in bacteriaDirect observation of genome surveillance by CRISPR-Cas in bacteria

S. Govindarajan*1-2, A. Borges2, J. Bondy-Denomy2
1Department of Biological sciences, SRM University - AP, Guntur, India 2Department of Microbiology and Immunology, University of California San Francisco, San Francisco, United States 
14D

Bacterial antibiotic resistance editing by CRISPR-Cas9 systems

M. Oloomi*, S. Bouzari
Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran 
15B

SPECIFICITY DETERMINANTS OF NEW ANTIPHAGE DEFENSE SYSTEMS

A. Stokar-Avihail*, T. Fedorenko, G. Shulman, N. Wojtania, R. Sorek
Molecular Genetics, Sorek Lab, Weizmann Institute of Science, Rehovot, Israel 
15D

Genome-wide investigation of anti-CRISPR promoter regions suggests the importance of its regulation in mobile genetic elements (MGEs)

S. Shehreen*1, P. Fineran2, C. Brown1
1Department of Biochemistry, 710 Cumberland Street, University of Otago, North Dunedin, New Zealand 2Department of Microbiology and Immunology, University of Otago, North Dunedin, New Zealand 
16B

An engineered Cas9 for highly specific genome editing and detection of nucleic acids including nCoV-2 variants of concern

D. Chakraborty
Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, New Delhi, India 
16D

Low Cost paper-based Urine Dipsticks for Detection of Chronic Kidney Disease Biomarkers (Creatinine and Microalbumin ) and the future roadmap

M. Biswas*1, K. S Rao1-2, N. Nivethini1, R. Nair1
1Bhat Bio-Tech India (P) Ltd, Bangalore, India 2National Centre for Flexible Electronics, Kanpur, India 
17B

Rapid detection of CRISPR systems

B. Saljooghi, D. Perrin*
Queensland University of Technology, Brisbane, Australia 
17D

Internal Translation of Large Subunit Genes Generates Small Subunits that Assemble into Type I CRISPR-Cas Effector Complexes

T. Mcbride*1, E. Schwartz2, A. Kumar3, D. Taylor2, P. Fineran1, R. Fagerlund1
1Department of Microbiology and Immunology, Fineran Lab, University of Otago, Dunedin, New Zealand 2Department of Molecular Biosciences, University of Texas at Austin, Austin, United States 3Centre for Protein Research, University of Otago, Dunedin, New Zealand 
Tuesday, June 8, 2021
Session Poster 3
6.40 pm-8.00 pm (GMT+2)
18A

Common regulatory mechanisms in CRISPR-Cas systems of type I-F and III-B participate in their cooperative response to phage infection

P. Lucas-Elío1, L.R. Molina-Quintero1, H. Xu2, A. Sanchez-Amat*1
1Department of Genetics and Microbiology, University of Murcia, Murcia, Spain 2Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin Tx 78712, United States 
18C

StpA represses CRISPR-Cas immunity in H-NS deficient Escherichia coli

D. Mitić*, M. Radovčić, D. Markulin, I. Ivančić Baće
Department of biology, Division of Molecular Biology, Faculty of science, Zagreb, Croatia 
19A

Targeted RNA knockdown by a Type III CRISPR-Cas complex in zebrafish

T. Fricke1, D. Smalakyte2, M. Lapinski1, A. Pateria1, C. Weige1, M. Pastor3, A. Kolano1, D. Klimavicius2, C. Winata1, V. Siksnys2, G. Tamulaitis*2, M. Bochtler1-3
1International Institute of Molecular and Cell Biology, Warsaw, Poland 2Institute of Biotechnology, Vilnius University, Vilnius, Lithuania 3Institute of Biochemistry and Biophysics, Warsaw, Poland 
19C

CReasPy-cloning : Simultaneous cloning and engineering of megabase-sized genomes into yeast using the CRISPR-Cas9 system

E. Ruiz1, V. Talenton1, M.P. Dubrana1, G. Guesdon*1, M. Lluch-Senar2-3, P. Sirand-Pugnet1, Y. Arfi1, C. Lartigue1
1INRAE, Univ. Bordeaux, BFP, F-33140, Villenave D’ornon, France 2EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain 3Universitat Pompeu Fabra (UPF), Barcelona, Spain 
20A

ENDO-Pore: High-throughput linked-end mapping of single DNA cleavage events

O. Torres Montaguth*, S. J. Cross, L. Lee, F. M. Diffin, M. D. Szczelkun
Biochemistry school, Protein-DNA interactions unit, University of Bristol, Bristol, United Kingdom 
20C

Programmable double-stranded DNA target cleavage by miniature CRISPR-Cas12f nucleases

T. Karvelis*1, G. Bigelyte1, J. Young2, K. Budre1, R. Zedaveinyte1, S. Paulraj2, S. Henkel-Heinecke3, A. Silanskas1, R. Seidel3, V. Siksnys1
1Vilnius University, Life Sciences Center, Institute of Biotechnology, Vilnius, Lithuania 2Corteva Agriscience™ Agriculture Division of DowDuPont™, Johnston, United States 3Leipzig University, Institute of Experimental Physics, Leipzig, Germany 
21A

Harnessing CRISPR to combat SARS-CoV-2 infections

A. Kinori*1, M. Israeli1, N. Paran2, N. Erez2, Y. Yahalom-Ronen2, E. Bar-Haim1, T. Chitlaru1, O. Cohen1
1Department of Biochemistry and Molecular Genetics, IIBR, Ness-Ziona, Israel 2Department of Infectious Diseases, IIBR, Ness-Ziona, Israel 
21C

Forward Genetic Screening and Single Cell Analysis with CRISPRi Transcriptional Repressors

A. Ravanelli1, R. Grady1, E. Meer2, J. Terry2, C. Jowdy1
1Merck KGaA, Darmstadt, Germany 210x Genomics, Pleasanton, United States 
22A

Structural and biochemical analysis of Cas4 and Cas1 in fusion and as standalone proteins

Y. Dhingra*, H. Lee, D. Sashital
Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States 
22C

iATLANTIS: Using Cas3 to make immune islands disappear

A. Wirganowicz, E. Huiting*, B. Csörgő, L. León, J. Bondy-Denomy
Department of Microbiology and Immunology, University of California San Francisco, San Francisco, United States 
23A

Cas9 nicking is sufficient to provide phage resistance

G. Nguyen*, K. Murugan, D. Shashital
Roy J. Carver Department of Biochemistry, Biophysics, & Molecular Biology, Iowa State University, Ames, United States 
23C

Cas4 provides differential protection of prespacer ends from cleavage by host exonucleases

S. Suresh*, D. Sashital
Iowa State University, Ames, United States 
24A

Reproducible Antigen Recognition by the Type I-F CRISPR-Cas System

T. Wiegand*1, E. Semenova2, A. Shiriaeva3-4, I. Fedorov3, K. Datsenko2, K. Severinov2-3, B. Wiedenheft1
1Microbiology and Immunology, Montana State University, Bozemanm, Montana, United States 2Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, United States 3Skolkovo Institute of Science and Technology, Skolkovo, Russia 4Department of Molecular Microbiology, Peter the Great St. Petersberg Polytechnic University, Saint-Petersberg, Russia 

Annulation auteur : Diversification of compact CRISPR-Cas systems identified in metagenomic data

L. Harrington
259 E Grand Ave, Mammoth Biosciences, South san Francisco, United States 
24C

Sensitive defense systems annotation reveals defense hotspots

M. Johnson*, E. Laderman, J. Bondy-Denomy
University of California, San Francisco, San Francisco, United States 
25A

Accelerated RNA detection using tandem CRISPR nucleases

T. Liu*1, G. Knott1-2, D. Smock1, J. Desmarais1, S. Son1, A. Bhuiya1, S. Jakhanwal1, N. Prywes1, S. Agrawal1, M. Díaz De León Derby1, N. Switz3, M. Armstrong4, A. Harris1, E. Charles1, B. Thornton1, P. Fozouni5-6, J. Shu5-6, S. Stephens5-6, G. Kumar5-6, C. Zhao5-7, A. Mok1, A. Iavarone1, A. Escajeda8, R. Mcintosh8, S. Kim1, E. Dugan1, IGI. Testing Consortium1, K. Pollard5-7, M. Tan8, M. Ott5-6, D. Fletcher1-7, L. Lareau1, P. Hsu1, D. Savage1, J. Doudna1-9
1University of California, Berkeley, United States 2Monash University, Vic 3800, Australia 3San José State University, San José, United States 4Lawrence Berkeley National Laboratory, Berkeley, United States 5Gladstone Institutes, San Francisco, United States 6University of California, San Francisco, United States 7Chan Zuckerberg Biohub, San Francisco, United States 8Wainamics, Inc, Pleasanton, United States 9Howard Hughes Medical Institute, Berkeley, United States 
25C

Reconstruction of the RNA-guided Cascade complex from Escherichia coli

S. Lemak*1, A.F. Yakunin1-2
1Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada 2Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom 
26A

Roles for non-Cas Nucleases during Type III-A CRISPR-Cas immunity

L. Chou Zheng*, A. Hatoum-Aslan
Department of Microbiology, Dr. Hatoum-Aslan's Lab, University of Illinois at Urbana-Champaign, Urbana, United States 
26C

Structural basis for assembly of non-canonical small subunits into type I-C Cascade

R. O'brien*, I. Santos, D. Wrapp, J. Bravo, E. Schwartz, J. Brodbelt, D. Taylor
University of Texas at Austin, Austin, United States 
27A

Structural Studies of Type IV CRISPR Complexes

J. Bravo*1, YI. Zhou1, H. Taylor2, J. Steens3, R. Jackson2, R. Staals4, D. Taylor1
1University of Texas at Austin, Austin, United States 2Department of Chemistry and Biochemistry, Utah State University, Logan, Ut, United States 3Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands 4Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, United States 
27C

Engineering an S phase sensor with potential application to CRISPR-Cas-based genome editing

A. Duringer*, C. Goupil, J. Loehr, Y. Doyon
Université Laval, Québec, Canada 
28A

Molecular insights into type IV-A3 CRISPR-Cas systems and their role in plasmid-plasmid competition

F. Benz*, S. Camara-Wilpert, S. J. Sørensen, R. Pinilla-Redondo
Section of Microbiology, University of Copenhagen, København, Denmark 
28C

CRISPR-CasΦ from huge phages is a hypercompact genome editor

B. Al-Shayeb*1, P. Pausch1, E. Bisom-Rapp1, C. Tsuchida1, Z. Li2, B. Cress1, G. Knott1, S. Jacobsen2, J. Banfield1, J. Doudna1
1Innovative Genomics Institute, UC Berkeley, Berkeley, United States 2University of California, Los Angeles, Los Angeles, United States 
29A

Adaptability of 21 Functional Cas12a Orthologs through Combinatorial of crRNA

L. Nguyen*1, P. Jain1-2
1Department of Chemical Engineering, University of Florida, Gainesville, United States 2UF Health Care Center, University of Florida, Gainesville, United States 
29C

CRISPR-Cas12a targeting of ssDNA plays no detectable role in immunity

N. Marino*1, R. Pinilla-Redondo2, J. Bondy-Denomy1
1Microbiology and Immunology, University of California San Francisco, San Francisco, United States 2Department of Technological Educations, University College Copenhagen, Copenhagen, Denmark 
30A

Evaluating putative Type IV-A anti-CRISPR proteins

A. Lyons*1, A. Williams1, B. Redmam1, B. Ferguson1, B. Findlay1, S. Sturgill1, A. Borges2, J. Zhang2, J. Bondy-Denomy2, R. Jackson1
1Ryan Jackson Lab, Utah State University, Logan, United States 2Joseph Bondy-Denomy Lab, University of California San Francisco, San Francisco, United States 
30C

CRISPRclassify: repeat-based classification of CRISPR loci

M. Nethery*1, M. Korvink2, K. Makarova3, Y. Wolf3, E. Koonin3, R. Barrangou1
1Genomic Sciences, North Carolina State University, Raleigh, United States 2ITS Data Science, Premier, Inc, Charlotte, United States 3National Center for Biotechnology Information, National Library of Medicine, Bethesda, United States 
31A

Amplification-free nucleic acid detection at room temperature using CRISPR Chain Reaction

S. Rananaware*, S. Anekar, E. Vesco, N. Macaluso, M. Downing, P. Jain
Chemical Engineering, University of Florida, Gainesville, United States 
31C

Determining the role of the putative DinG helicase in type IV-A CRISPR immunity

R. Jackson, V. Crowley, M. Armbrust, C. Cahoon, H. Domgaard*
Chemistry & Biochemistry, Jackson Lab, Utah State University, Logan, United States 
32A

Effect of Cas13 interference on major processes in the cell

I. Jain*1, M. Kolesnik2, E. Semenova1, K. Severinov1-2
1Waksman Institute of Microbiology, Rutgers University, Piscataway, United States 2Skolkovo Institute of Science and Technology, Moscow, Russia 
32C

Engineered CRISPR-ENHANCE Systems As Rapid Diagnostics

L. Nguyen, S. Rananaware, B. Pizzano, B. Stone, B. Smith, P. Jain*
Department of Chemical Engineering, University of Florida, Gainesville, United States 
33A

Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa

L. Leon*, A. Park, A. Borges, J. Zhang, J. Bondy-Denomy
Microbiology and Immunology, Bondy-Denomy lab, UCSF, San Francisco, United States 
33C

Ecological drivers of CRISPR-Cas immune systems

W. Xiao1, J. Weissman2, P. Johnson*1
1Biology, Universitiy of Maryland, College Park, College Park, United States 2University of Southern California, Los Angeles, United States 
34A

Bridge helix of Cas12a and Cas9 imparts selectivity in target DNA cleavage and coordinates the concerted double stranded DNA cleavage 

H. Parameshwaran1, K. Babu1, A. Allen2, P. Qin2, R. Rajan*1
1Department of Chemistry and Biochemistry, University of Oklahoma, Norman, United States 2Department of Chemistry, University of Southern California, Los Angeles, United States 
34C

CRISPRon: Spatial and Temporal Control of CRISPR Editing Using Blue Light

K. Holden*, A. Kadina, J. Carlson-Stevermer, J. Walker, T. Maures, R. Deans
Synthego, Redwood City, United States 
5A

Functional interrogation of DNA damage response variants with base editing screens

R. Cuella Martin*, SB. Hayward, X. Fan, X. Chen, JW. Huang, A. Taglialatela, G. Leuzzi, J. Zhao, R. Rabadan, C. Lu, Y. Shen, A. Ciccia
Columbia University, New York, United States 
Wednesday, June 9, 2021
Session Poster 4
1.00 pm-2.00 pm (GMT+2)
18B

Application of SHERLOCK method for detecting BCR-ABL1 in chronic myeloid leukemia

G. Cullot*1, V. Prouzet-Mauléon1-2, G. Etienne1, S. Dulucq1, B. Turcq1-2
1INSERM U1218, Univ. Bordeaux - Institut Bergonié, Bordeaux, France 2CRISP'edit, TBMCore, CNRS UMR3427, INSERM US005, Bordeaux, France 
18D

Multistable and dynamic CRISPRi-based synthetic circuits

J. Santos Moreno*1-2, E. Tasiudi3, J. Stelling3, Y. Schaerli2
1Dept. of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain 2Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland 3Department of Biosystems Science and Engineering, ETH Zurich and SIB Swiss Institute of Bioinformatics, Basel, Switzerland 
19B

Understanding the sequence determinants of guide RNAs for the activity of dCas9 in bacteria

A. Calvo-Villamañán*, A. Vigouroux, D. Bikard
Department of Microbiology, Institut Pasteur, Paris, France 
19D

DNA Supercoiling Induces Cas9 Off-Target Activity

M. Newton*1, G. King2, B. Taylor3, M. Cuomo3, D. Rueda4-5
1The Francis Crick Institute, London, United Kingdom 2Institute of Structural and Molecular Biology, University College London, London, United Kingdom 3Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom 4Department of Medicine, Molecular Virology, Imperial College London, London, United Kingdom 5Single Molecule Imaging, MRC-London Institute of Medical Sciences, London, United Kingdom 
20B

Bacterial biodiversity drives the evolution of CRISPR-based phage resistance

E. Alseth*1, E. Pursey1, A. Luján2, I. Mcleod1, C. Rollie1, E. Westra1
1ESI, University of Exeter, Penryn, United Kingdom 2Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina 
20D

The CRISPR leader prioritizes newly-acquired spacers for Cas9 immunity

C. Liao*1, S. Sharma2, SL. Svensson2, Z. Weinberg3, A. Kibe1, OS. Alkhnbashi4, T. Bischler5, R. Backofen4-6, N. Caliskan1-7, CM. Sharma2-7, CL. Beisel1-7
1Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany 2Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany 3Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Leipzig, Germany 4Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany 5Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany 6Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany 7Medical Faculty, University of Würzburg, Würzburg, Germany 
21B

CRISPR-Cas systems are widespread accessory elements across plasmids

R. Pinilla-Redondo*1, J. Russel1, D. Mayo-Muñoz2-1, S. A. Shah3, R. A. Garrett4, J. Nesme1, J. S. Madsen1, P. C. Fineran2-5, S. J. Sørensen1
1Section of Microbiology, Copenhagen University, Copenhagen, Denmark 2Dept. Microbiology and Immunology, University of Otago, Dunedin, New Zealand 3Herlev and Gentofte Hospital, COPSAC, Copenhagen, Denmark 4Danish Archaea Centre, University of Copenhagen, Copenhagen, Denmark 5Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand 
21D

A Moraxella phage protein inhibits Type V-A and Type I-C CRISPR-Cas immunity

R. Pinilla-Redondo*1, C. Kokontis2, N. D. Marino2, J. Bondy-Denomy2
1Section of Microbiology, Copenhagen University, Copenhagen, Denmark 2Dept. of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States 
22B

Ligation-Assisted Homologous Recombination enables precise genome editing by deploying both MMEJ and HDR

Z. Zhao*, P. Shang, F. Sage, N. Geijsen
Dept. of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands 
22D

Optimization of knockin efficiency on human iPS cells and rat embryos using the CRISPR/Cas9 system

V. Chenouard*1-2, L. Tesson1, S. Remy1, I. Leray3, Y. Cherifi2, L. David1-3, I. Anegon1
1Centre de Recherche en Transplantation et Immunologie, UMR 1064, Inserm, Nantes, France 2genOway, Lyon, France 3SFR Santé, Inserm UMS 016, CNRS UMS3556, Nantes Université, Nantes, France 
23B

Genome targeting by CRISPR to control avian pathogenic E. coli (APEC)

O. Hussein*1-2, H. Kneuper3, R. Habgood3, T. Cogan1, M.J. Woodward3-4
1Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom 2Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt 3Folium Science, Unit-DX, Albert Road, Bristol, United Kingdom 4Food and Nutritional Sciences Department, University of Reading, Reading, United Kingdom 
23D

Inhibition of Cascade complex by the AcrIF6 and AcrIF9 proteins

E. Kupcinskaite*, G. Tamulaitiene, T. Sinkunas
Vilnius University, Life Sciences Center, Institute of Biotechnology, Department of Protein - DNA Interactions, Sauletekis av. 7, LT-10257, Vilnius, Lithuania 
24B

Factors influencing CRISPR acquisition in native II-C and VI-B systems of Flavobacterium columnare

C. Díez-Villaseñor*, L.R. Sundberg
Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland 
24D

Prediction of CRISPR/Cas12 sgRNA activity using hybrid convolutional and recurrent neural networks

M. Ozsoz1, Z. Said Ameen*1, A. Mubarak2, F. Al Turjman3, S. Serte2
1Biomedical Engineering, Near East University Cyprus, Mersin 10, Turkey 2Electrical Engineering, Near East University Cyprus, Nicosia, Turkey 3Artificial Intelligence, Near East University Cyprus, Nicosia, Turkey 
25B

CRISPR and non-CRISPR defence in P.aeruginosa

A. Maestri*1, A. Chevallereau2-1, E. Pursey1, S. Van Houte1, E.R. Westra1
1University of Exeter, Penryn, United Kingdom 2INSERM U1016 - Department of Infection, Immunity, and Inflammation, Institut Cochin, Paris, France 
25D

Pathological modelling of osseous defect of neurofibromatosis type I using induced pluripotent stem cells 

A. Darle1, T. Mahiet1, D. Aubin2-3, S. Martineau2, B. Parfait4-5, G. Lemaitre2, C. Baldeschi2, N. Holic*2
1CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France 2INSERM/UEVE UMR 861, I-STEM, AFM, Corbeil-Essonnes, France 3Phenocell SAS, Grasse, France 4Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France 5EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France 
26B

Expanding the prokaryotic base-editing toolbox using a thermostable Cas9 variant and the AcrIIC1 anti-CRISPR protein

D. Trasanidou*1, P. Mohanraju2, A. Potocnik1, P. Barendse1, E. Bouzetos1, E. Karpouzis1, A. Desmet1, R. Van Kranenburg1, R. Staals1, J. Van Der Oost1, I. Mougiakos3
1Laboratory of Microbiology sub. Bacterial Genetics, Wageningen University & Research, Wageningen, The Netherlands 2Corbion, Gorinchem, The Netherlands 3Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands 4Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany 
26D

Viral abundance and diversity determine CRISPR abundances across microbial ecosystems

S. Meaden*1-2, A. Biswas2, K. Arkhipova3, S. Morales2, B. Dutilh3, ER. Westra1, P. Fineran2
1University of Exeter, Penryn, United Kingdom 2University of Exeter / University of Otago, Dunedin, New Zealand 3University of Otago, Dunedin, New Zealand 4Utrecht University, Utrecht, The Netherlands 
27B

Distractions can be good: unmodified DNA oligonucleotides as inhibitors of CRISPR-Cas activity at on- and off-target sites

T. Swartjes*1, P. Shang2, T. Künne3-1, D. Van Den Berg3, N. Geijsen2, S. Brouns4, J. Van Der Oost1, R. Staals1, R. Notebaart3
1Laboratory of Microbiology, Bacterial Genetics, Wageningen University & Research, Wageningen, The Netherlands 2Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands 3Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands 4Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands 
27D

Challenges to employ CRISPR-Cas9 as antimicrobials in clinical bacteria 

T. Tagliaferri*1-2, N. Guimarães2, M. Pereira2, L. Felicori2, S. Santos2, T. Mendes3, HP. Horz1
1Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany 2Federal University of Minas Gerais, Belo Horizonte, Brazil 3Federal University of Viçosa, Viçosa, Brazil 
28B

Adaptation in CRISPR type V-A and type V-B

W. Wu*1, S. Jackson2, C. Almendros3, S. Yilmaz1, R. Joosten1, A. Haagsma3, S. Brouns3, J. Van Der Oost1, R. Staals1
1Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands 2University of Otago, Otago, New Zealand 3Delft Univerist of technology, Delft, The Netherlands 
28D

Long-read sequencing for the validation of alleles produced by genome editing

L. Teboul
Mary Lyon Center, Molecular and Cellular Biology, MRC Harwell, Didcot, United Kingdom 
29B

CRISPR-Cas systems do not indicate the diversity reduction of human gut microbiomes in obesity and autism spectrum disorders

N. Zakharevich*1, M. Nikitin1-2, A. Kovtun1-2, V. Danilenko1-2, I. Artamonova1-3
1Vavilov Institute of General Genetics RAS, Moscow, Russia 2Moscow Institute of Physics and Technology (State University), Moscow, Russia 3Kharkevich Institute for Information Transmission problems RAS, Moscow, Russia 
29D

CRISPR/Cas9 in mycoplasma: from natural systems of minimal bacteria towards tools for genome engineering

T. Ipoutcha*1-2, I. Tsarmpopoulos2-1, G. Gourgues1, P. Thebault3, A. Blanchard2-1, C. Lartigue1, P. Sirand-Pugnet2-1
1UMR 1332, BFP, INRAE, Villenave D'ornon, France 2UMR 1332, BFP, Univ. Bordeaux, Villenave D'ornon, France 3Labri, Univ. Bordeaux, Bordeaux, France 
30B

In vivo CRISPR-mediated targeting of fusion oncogenes for cancer-directed therapy

M. Martinez-Lage1, R. Torres-Ruiz1-2, P. Puig-Serra1, MC. Casado-Rosas1, P. Moreno-Gaona1, P. Ojeda1, MC. Martin1, FJ. Moya1, O. Quintana-Bustamante3-4, S. Garcia-Silva5, AM. Carcaboso6, P. Petazzi2, C. Bueno2, J. Mora6-7, H. Peinado5, JC. Segovia3-4, P. Menendez3-8, S. Rodríguez-Perales1
1Molecular Cytogenetics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain 2Department of Biomedicin, Josep Carreras Leukemia Research Institute, Barcelon, Spain 3Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, entro de Investigaciones Energéticas,Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 4Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), Advanced Therapies Mixed Unit, Madrid, Spain 5Microenvironmentand Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain 6Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain 7Institut de Recerca Sant Joan deDeu, Barcelona, Spain 8Instituciò Catalana deRecerca i Estudis Avançats (ICREA), Barcelona, Spain 
30D

A comparative analysis of CRISPR diversity in cheese related genomes and metagenomes

T. Schowing*1, R. Bruggmann2, V. Somerville3-1
1Agroscope, Liebefeld, Switzerland 2IBU, University of Bern, Bern, Switzerland 3University of Lausanne, Lausanne, Switzerland 
31B

Programmable RNA sensing and DNA targeting by a split domain CRISPR–Cas12a gRNA switch

W. Rostain*1, S. Collins2, C. Liao3, C. Beisel3-2
1Institut Pasteur, Paris, France 2North Carolina State University, Raleigh, United States 3Helmholtz Institute for RNA-based Infection Research (HIRI), Wurzburg, Germany 
31D

Explainable Clostridium difficile variant classification based on CRISPR array contents

B. Kirillov*, A. Stepakov, P. Muziukina, K. Severinov
Skolkovo Institute of Science and Technology, Saint-Petersburg, Russia 
32B

Implementation of a viral delivery of CRISPR/Cas13 system to knockdown oncogenes

P. Puig-Serra1, R. Torres-Ruiz1-2, M. Martínez-Lage1, MC. Casado-Rosas1, B. Olalla-Sastre1, S. Rodríguez-Perales1
1Molecular Cytogenetics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain 2Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 
32D

The Role of DnaQ exonucleases in primed adaptation

I. Fedorov*1-2, A. Shiriaeva3, T. Khvostikov4, K. Severinov1-5
1Skolkovo Institute of Science and Technology, Moscow, Russia 2Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia 3Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia 4D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia 5Waksman Institute of Microbiology; The State University of New Jersey, Piscataway, Nj, United States 
33B

Comprehensive PAM prediction for CRISPR-Cas systems reveals evidence for preferred strand targeting and spacer sharing

J. Vink*, J. Baijens, S. Brouns
Department of Bionanoscience, TU Delft, Delft, The Netherlands 
33D

High-throughput genetic screening with a CRISPR/Cas9 library of epigenetic modulators in Ewing Sarcoma cells

M. Casado-Rosas1, M. Martínez-Lage1, P. Puig-Serra1, I. Ibañez De Caceres2, F. Al-Shahrour3, O. Graña3, C. Fusteiro3, C. Rodriguez-Antolín2, R. Torres-Ruiz1-4, S. Rodríguez-Perales*1
1Molecular Cytogenetics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain 2Epigenetics Laboratory. INGEMM. Experimental Therapies and novel biomarkers in cancer, IdiPAZ. H. La PAZ, Madrid, Spain 3Bioinformatic Unit, National Cancer Research Centre, Madrid, Spain 4Innovative Therapies of haematopoietic system, CIEMAT-CIBERER- Fundación Jimenez Díaz Hospital, Madrid, Spain 
34B

A toolbox for targeted CRISPR-Cas9-mediated base-editing in Pseudomonas putida

E. Kozaeva*, Z. Nielsen, P. Nikel
Novo Nordisk Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark 
34D

The CRISPR-Cas system is an adaptive immune system in prokaryotes, providing resistance against invading viruses and plasmids. The identification of CRISPR loci is currently a non-standardized, ambiguous process, requiring the manual combination of multiple tools as existing tools detect only parts of the CRISPR-systems, and lack quality control, annotation and assessment of the detected CRISPR loci.

R. Backofen
Bioinformatics, University of Freiburg, Freiburg, Germany 

 

Persistance-webSoft
congresoft.fr
plateforme dédiée aux manifestations
Tel. : 01 84 17 20 55 / 06 89 19 34 06
E-mail : contact@congresoft.fr
La première plateforme Française de gestion de manifestations regroupant la billeterie, la gestion des hébergements, une boutique en ligne, la gestion des surfaces d'exposition et la gestion complète du programme scientifique.
Organisation de Congrès, manifestations, Séminiaires, Colloques